مرکزوار جبرهای لی افاین تعمیم یافته و جبرهای لی مدرج شده توسط سیستم ریشه
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم
- author محسن کریمی خرمی
- adviser سعید اعظم محمدرضا پوریای ولی
- Number of pages: First 15 pages
- publication year 1386
abstract
چکیده ندارد.
similar resources
ایزوتوپی جبرهای لی آفین تعمیم یافته و چنبره های لی
ما در این پایان نامه ایزوتوپی را برای چنبره های لی بدون مرکز مطالعه می کنیم و نشان می دهیم که یک تناظر یک به یک بین چنبره های لی بدون تا حد ایزوتوپی و خانواده های جبرهای لی آفین تعمیم یافته تا حد یکریختی برقرار است. همچنین نشان می دهیم که چنبره های لی بدون مرکز می توانند توسط جبرهای یکدار که عموما غیر شرکت پذیر هستندمختصات سازی شوند. برای برخی از انواع چنبره های لی بدون مرکز تعاریف کلیاسیکی از ...
15 صفحه اولجبرهای لی آفین تعمیم یافته موضعی
در این پایان نامه تعریف جدیدی برای جبر لی آفین تعمیم یافته ارائه می دهیم و حالت کلی تری از جبر را با نام جبر لی آفین تعمیم یافته موضعی، معرفی و بررسی می کنیم. همچنین تعریفی از پوچ-سیستم ها ارائه می دهیم. پس از این تعاریف برخی خواص اساسی ریشه و فضاهای ریشه وابسته به این جبرها را مورد بررسی قرار می دهیم. سپس حدس کز را برای این نوع جبرها ثابت می کنیم، که بیان می کند فرم دوخطی متقارنی که به طور طبی...
زیر جبر نقاط ثابت جبرهای لی مدرج-ریشه
در این پایان نامه زیرجبر نقاط ثابت یک جبر لی مدرج-ریشه، متناظر با کلاس معینی از خود ریختی های با مرتبه ی متناهی از آن را مورد مطالعه قرار می دهیم. می دانیم که هسته ی بدون مرکز جبرهای لی آفین توسیعی، یا به طور معادل، چنبره های لی بدون مرکز تحویل ناپذیر، مثال هایی از جبرهای لی مدرج-ریشه هستند. لذا بررسی ساختار زیر جبر نقاط ثابت یک جبر لی مدرج-ریشه، متناظر با کلاس معینی از خودریختی های آن، تعمیمی ...
15 صفحه اولجبرهای مختصاتی جبرهای لی آفین تعمیم یافته از نوع a1
جبرهای مختصاتی جبرهای لی آفین تعمیم یافته از نوع a1 را مشخصه سازی می کنیم و نشان می دهیم این نوع جبرها به صورت یک جبر جردن یکدار zn -مدرج از نوع معینی موسوم به چنبره های جردن است. چنبره جردن را طبقه بندی و سپس 5 نمونه از چنبره جردن را بدست می اوریم.
جبرهای لی مقدماتی و a-جبرهای لی
در سراسر پایان نامه فرض می کنیم l یک جبرلی با بعد متناهی روی میدان f باشد. در ابتدا جبرهای لی مقدماتی و a-جبرها وe-جبرها تعریف و قضایایی در رابطه با انها ارائه شده است. خاصیت جالب جبرهای لی مقدماتی این است که روی هرکدام از ایده آلهایشان تجزیه می شوند. در این پایاننامه نشان خواهیم داد که هر جبر لی مقدماتی روی میدان با مشخصه صفر تقریبا جبری است. در نهایت به دسته بندی جبرهای لی ساده مقدماتی حقیق...
جبرهای لی موضعاً متناهی با تجزیه سیستم ریشه
نشان خواهیم داد که هر جبر لی موضعاً متناهی از بعد شمارا روی میدان f که در یک تجزیه ریشه صدق کند و رادیکال موضعاً حل پذیرش برابر صفر می باشد، ضرورتاً تحویلی - ریشه خواهد بود.
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023